
Journal of Robotics Research (JRR)

Volume 1, Issue 1, Date: 11-7-2024

 7

 Received: 25-6-2024

 Revised: 9-7-2024

 Published: 11-7-2024
This article is freely accessible under the Creative Commons Attribution License, allowing for its use, distribution, and reproduction in any format, as long as

the original work is correctly cited. © 2024 The Authors.

Evaluating OMNI Robot Navigation with SLAM in

CoppeliaSim: Hemangiomas and Nonhomogeneous

Paths

Ata Jahangir Moshayedi1,Yibin Xie1,Maryam Sharifdoust3,Amir Sohail Khan1

1School of Information Engineering Jiangxi University of Science and Technology, Ganzhou, Jiangxi, China.

 2 Department of Mathematics and Statistics,McMasterUniversity,Hamilton,1280,Ontario, Canada.

Email: 1 ajm@jxust.edu.cn ,2469184855@qq.com,mrsohail21@gmail.com, 2 sharifdoost@gmail.com

*Corresponding Author: Ata Jahangir Moshayedi: ajm@jxust.edu.cn

Abstract— This study aims to enhance the accuracy and

efficiency of Omni robots in navigation, reducing errors and

resource use to improve safety and task completion in various

applications. Utilizing CoppeliaSim (Vrep) for simulation, the

research focuses on the Omni robot's performance over

homogeneous and non-homogeneous paths using SLAM. Key

parameters such as running time, average velocity, body change,

and error are analyzed with statistical methods to ensure robust

findings. Results show a direct relationship between speed and

tracking error, highlighting the need for optimized speed

management. The study provides insights into the robot's

performance under different conditions, offering valuable data

for further optimization. This research contributes to the

development of safer, more reliable robotic systems with

applications in industrial automation, healthcare, and service

robotics. Virtual prototyping reduces development costs and

risks, promoting the adoption of advanced robotic technologies

and enhancing productivity and safety in various fields.

Keywords— OMNI robot platform, CoppeliaSim, Vrep,

Simultaneous Localization and Mapping, SLAM, Levene's Test

,Independent samples t-test

I. INTRODUCTION

The term "omni" means "all" or "every," which is why

OMNI robots are named to emphasize their ability to move in

any direction—forward, backward, sideways, and

rotationally without changing orientation[1]. This unique

capability is typically achieved through specialized wheels,

such as Mecanum or omni wheels, allowing the robot to

navigate complex environments with high maneuverability

and flexibility[2]. This design enhances precision and

efficiency in tasks, improves navigation in intricate settings,

and increases versatility and adaptability for various

applications[3]. Path tracking is a vital task in robotic science

to optimizes efficiency by following the most optimal routes,

reducing travel time and energy consumption[4][5].Ensuring

predictable movements enhances human-robot interaction

and minimizes errors[6]. Consistent path tracking supports

reliable performance and repeatability, essential for tasks like

industrial automation and logistics. The omni platform's

special design makes path tracking essential to ensure

precision and accuracy in executing tasks, navigating

obstacles, and maintaining safety. As the review paper

shows, there are eight methods for the OMNI robot platform

that can be selected based on the application's requirements

for precision, robustness, computational complexity, and

environmental conditions[7]. These methods can be

described as follows: Odometry: Uses data from wheel

encoders to estimate the robot's position and orientation by

integrating the motion over time. This method is simple and

requires minimal computational resources. However, it is

prone to errors accumulating over time due to wheel slippage

and uneven surfaces[8][9]. Inertial Navigation System

(INS): Utilizes accelerometers and gyroscopes to track the

robot's motion. The data is integrated to estimate the position

and orientation. This method can provide high-frequency

updates and is immune to wheel slippage, but sensor drift can

cause errors to accumulate over time[10]. Global Navigation

Satellite System (GNSS): Uses GPS or other satellite-based

systems to determine the robot's position. It provides absolute

positioning with good accuracy in open environments but is

limited by signal availability and accuracy in indoor or

obstructed environments[11]. Visual Odometry: Uses

cameras to track features in the environment and estimate the

robot's motion. This method can provide accurate position

estimates and works well in environments with distinct visual

features. However, it is computationally intensive and can be

affected by changes in lighting or featureless

environments[12]. Simultaneous Localization and

Mapping (SLAM): Builds a map of the environment while

simultaneously keeping track of the robot's position within

the map. This method can provide accurate localization in

unknown environments and handle dynamic changes but

requires significant computational resources and can be

complex to implement[13][14]. LIDAR-Based Tracking:

Uses a LIDAR sensor to scan the environment and track the

robot's position relative to detected features. It offers high

accuracy and robustness to changes in lighting but can be

expensive and data processing can be computationally

intensive[15]. Infrared (IR) Sensors: Uses IR sensors to

detect the position relative to known beacons or markers. This

method is simple and cost-effective for specific applications

but has limited range and can be affected by environmental

conditions[16]. Path Planning Algorithms: Uses algorithms

like A*, Dijkstra, or Rapidly-exploring Random Tree (RRT)

Journal of Robotics Research (JRR) 8

Moshayedi et al, Evaluating OMNI Robot Navigation with SLAM in CoppeliaSim: Hemangiomas and Nonhomogeneous

Paths

to plan the path based on a known map and update the robot's

position using various sensors. This method can find optimal

paths and handle complex environments but requires prior

knowledge of the environment and can be computationally

intensive[17]. The review of previous studies shows that

among these methods, SLAM is the most popular due to its

ability to handle dynamic and unknown environments

effectively[18]. Therefore, SLAM is selected as the main

focus of this paper for tracking the path. Besides, in this

research CoppeliaSim (formerly named Vrep) as the highly

ranked simulator among robotics simulators due to its

flexibility, extensive features, and real-time capabilities

selected to implement the robot platform. CoppeliaSim stands

alongside Gazebo and Webots, offering robust support for

complex robotic simulations. Its high ranking is attributed to

its comprehensive tools and versatility[19].

The main contributions of the paper are listed as follows:

Design and simulation of a real sized along with all features

for OMNI robot platform in CoppeliaSim.Utilization of ROS

and SLAM for path tracking missions. Comparison of the

robot's performance on two types of paths, homogeneous and

non-homogeneous, including obstacle navigation, to evaluate

and compare the robot's performance with the help of

inferential statistics (Levene's Test for Equality of Variances

and t-test).The authors believe that the performance of the

OMNI platform for navigating paths, hemangiomas, and

nonhomogeneous studies in CoppeliaSim demonstrates

advanced capabilities and improving safety and task

completion in various applications. By leveraging

CoppeliaSim (Vrep) as a robust simulation environment, the

paper facilitates rapid prototyping and validation of robotic

algorithms, significantly reducing development costs and

risks before real-world deployment. This provides

researchers with valuable insights to enhance the study of the

OMNI platform in SLAM applications which based on

researcher available resources reported rarely for this

platform in the CoppeliaSim. The paper arrangement is as

follows: Section 2, Omni Platform Design and

Implementation, contains all steps from the implementation

of real platform to the control and navigation of the robot,

including the environment configuration in CoppeliaSim.

Section 3, Experimental Results, presents the results of

experiments conducted on the designed hemangiomas and

nonhomogeneous paths. Section 4, Conclusion, provides a

summary of the key findings and implications of the study.

II. OMNI PLATFORM DESIGN AND IMPLEMENTATION

2.1 Kinematics analysis of OMNI platform

An OMNI structure, in the context of robotics, typically

refers to an omnidirectional robotic platform. This platform

is characterized by its ability to move in any direction without

needing to change its orientation. It features a chassis,

individual motors for each wheel, various sensors (Lidar

sensor in this research), and a control system for navigation

and SLAM. This structure is highly maneuverable and

suitable for applications needing precise navigation and

control as it is shown in shown in Figure 1(A and B). An

omnidirectional robot with four wheels can be

mathematically modeled to understand its movement and

control dynamics. The robot's coordinate system is centered

at the chassis, with four omnidirectional wheels labeled

𝜔1,𝜔2,𝜔3 and 𝜔4, positioned counterclockwise from the upper

left.

Figure 1.OMNI wheel and motion structure. (a) Real OMNI wheel.

(b) Motion structure of the wheel. Figure 4 Kinematics analysis. (a)

Chassis analysis. (b) Wheel speed analysis.

The key parameters include the 𝑣𝑤 represent wheel linear
velocities(Equation.(1)), ωw indicated wheel angular
speeds(Equation.(2)) and 𝑣𝑐 shows chassis linear
velocity(Equation.(3)).

𝑣𝑤=[𝑣1,𝑣2,𝑣3,𝑣4]𝑇 (1)

𝜔𝑤=[𝜔1,𝜔2,𝜔3,𝜔4]𝑇 (2)

𝑣𝑐=[𝑣𝑥,𝑣𝑦]𝑇 (3)

Where in (Equation.(1)), v1,v2,v3, and v4 represent the linear
velocity of one of the four wheels and in Wheel Angular
Speeds (ωw), Each element ω1,ω2,ω3, and ω4 represents the
angular velocity of one of the four wheels. Chassis Linear
Velocity (vc), The elements vx and vy represent the velocity
components of the chassis along the x and y axes,
respectively. This vector describes the overall translational
motion of the robot. chassis angular velocity ωc , wheel radius
R, and the distance from the chassis center to the wheels r as
it is shown in Figure 1(C and D). The kinematic equations
that relate the chassis velocity to the individual wheel
velocities for a 45-degree wheel configuration are given by
the transformation matrix (Equation.(4)).

[

v1

v2

v3

v4

] =
1

R
∙ [

1 −1 −r
1 1 r
 1 −1 r
1 1 −r

] ∙ [

vx

vy

ωc

] (4)

To find the chassis velocities from the wheel velocities,

the inverse transformation matrix (Equation.(5)).

[

vx

vy

ωc

] =
R

4
∙ [

 1
−1

−
1

r

 1
 1

1

r

 1
 −1

 −
1

r

 1
 1

1

r

] ∙ [

v1

v2

v3

v4

]

(5)

These equations allow for the control and analysis of the
robot's movements. The chassis linear velocities vx and vy
represent the robot's movement along the x and y axes, while
the chassis angular velocity ωc represents the rotational speed
of the chassis. The wheel velocities v1,v2,v3,v4 are derived
from the combined chassis movements and rotations,
influenced by the wheel radius R and the distance r[20]. This
model is essential for precise navigation and control in
applications such as SLAM.

Journal of Robotics Research (JRR) 9

Moshayedi et al, Evaluating OMNI Robot Navigation with SLAM in CoppeliaSim: Hemangiomas and Nonhomogeneous

Paths

2.2 Vrep simulation and implementation

As shown in Figure 2, simulating the OMNI robot

platform involves considering mechanical, electrical, and

control aspects. The design of an OMNI robot follows these

steps: mechanical and electrical design, sensor performance

simulation, integration, ROS initialization with CoppeliaSim

(Vrep), mapping the robot using classical SLAM with

GMapping and RViz, setting Move Base parameters, control

system design, and environment configuration. Each of these

steps is described in detail below:

1) Step 1: Mechanical and electrical design: The mechanical
and electrical design process begins with the construction of
an OMNI wheel model. To simplify and efficiently reproduce
the omnidirectional wheel characteristics, a set of double-
jointed ball-wheel structures is designed, considering its
complex structure and dimensions (The radius of 5cm and
Thickness of 6cm). Then a square pillar with dimensions of
25 cm*25 cm serves as the chassis. After that four
omnidirectional wheels are then connected to the chassis at
specific angles, as illustrated in Figure 2.

Figure 2. Build an OMNI robot platform. (A&B) wheel

disassembled (C) Chaises (D,E,F) Robot Chassis holder.(G) robot

Side view. (H) robot Right view (I) robot Top view.

As Figure 2 depicts the angles between neighboring

wheels are set at 90 degrees. Then along the wheel and

chassis, Completing the robot body structure involves

integrating the frame, PCB board, and lidar model. It should

be mentioned that all dimensions are based on the actual

specifications of the previously implemented OMNI robot

platform.

2) Step 2. Sensor Performance Simulation Section: This

section focuses on simulating the performance of the Lidar

Sensor as the obstacle avoidance and navigator robot

integrated into the OMNI robot platform, including their

accuracy, response times, and overall effectiveness in real-

world scenarios. Then, the radar scripting for the RPLIDAR

A1 sensor was finalized by referencing the Hokuyo URG lidar

driver script available in the CoppeliaSim model library.

Subsequently, the sensor's performance was thoroughly

tested, as illustrated in Figure 3.

Figure 3.The Lidar sensor RPLIDAR A1 model and test A)The

initial model (B,C) the lidar test ,(D,E) The robot movement.

3) Step 3. Integration: The final step involved assembling

the platform, ensuring precise alignment and stability of

mechanical components according to the design

specifications. Following this, all electrical components such

as motors, sensors, and controllers were integrated according

to the real design platform. The integrated system was

thoroughly tested for functionality and adjusted as needed to

ensure optimal performance.

4) Step 4: ROS Initialization with CoppeliaSim : In order

to navigate the robot Ros [21] used to control the Robot

platform and then Installing ROS involves confirming ROS

Kinetic installation on Ubuntu 16.04, launching the ROS

Master using the command 'roscore' ,starting CoppeliaSim

after roscore is running, and verifying successful

communication by checking the message "plugin

'ROSInterface': load succeeded.

5) Step 5 : Mapping the Robot Using Classical SLAM with

GMapping and RViz: The process involves mapping the robot

using the classical SLAM algorithm with GMapping and RViz

for accurate navigation and positioning in the simulated

environment. Generate a map using lidar scan data in RViz

and enable navigation and positioning. Transmit real-time

Journal of Robotics Research (JRR) 10

Moshayedi et al, Evaluating OMNI Robot Navigation with SLAM in CoppeliaSim: Hemangiomas and Nonhomogeneous

Paths

pose data from the robot in the CoppeliaSim simulation to

ROS in the odom format and broadcast the coordinate

transformation between the robot and the odom. Subscribe to

pose data in RViz, including three-dimensional coordinates,

directional angle, linear velocity, and rotational angular

velocity. Establish initial pose and synchronization using a

Dummy object, synchronize with the lidar coordinate system,

perform coordinate transformations, and publish results to

ROS. Invoke the GMapping function package in ROS for

SLAM construction. Then, finally to draw the environment

map enable the ROS [21].

Remote keyboard function and subscribe to the /cmd_vel

topic in the robot script for keyboard control. Manipulate the

robot to move in the map and complete the map drawing,

showing the movement and drawing process in RViz in real

time. Save the map using the command rosrun map_server

map_saver in the terminal, resulting in the map.pgm picture

file. After finishing all to draw the map the enable the ROS

remote keyboard function to control the robot. In the robot

script, subscribe to the /cmd_vel topic to receive keyboard

control commands.

Figure 4.Lidar test A,B)The test in a simple chamber (C,D)with

various obstacles. (E,F)in a chamber with various obstacles.

Next, manipulate the robot using the keyboard to move it

within the map, which will help in completing the map

drawing. The movement and map drawing process will be

shown in real time in RViz. Once the map is created, execute

the following command in the terminal to save the map:

rosrun map_server map_saver. This step will generate a

map.pgm picture file, as illustrated in Figure 4.

Figure 5. Map construction (CoppeliaSim).Cartography. (a)

GMapping running and Map Hemangiomas path in the form of

Circle ,(C,D) GMapping running and Map non-Hemangiomas path

in the form of Special Path.

Figure 5 illustrates the mapping arena for both
Hemangiomas and non-Hemangiomas paths, utilizing
GMapping in the CoppeliaSim simulator.

 6) Step 6 : Setting Move Base Parameters: The move_base
package plays a crucial role in ROS navigation, handling
global and local path planning by subscribing to Lidar, map
data, and Adaptive Monte Carlo Localization (AMCL)
positioning data. AMCL is a probabilistic algorithm used for
mobile robot localization, which estimates the robot's
position and orientation based on sensor data[19]. It translates
these paths into speed information, enabling efficient robot
navigation. Essential parameter files for
move_baseinclude:base_local_planner_params,yaml
costmap_common_params.yaml,global_costmap_params.ya
ml,local_costmap_params.yaml,each contributing to specific
aspects of navigation. Table 1 summarizes the parameter
settings for these files, defining key configurations for
move_base functionality. Finally, to test target point
navigation using RViz and the move_base topic control, start
by configuring the relevant startup files following the
move_base topic format.Add the path plug-in to display the
pre-planned and action paths in RViz, including the pose
indicator. Additionally, display the results of the particle filter
in the navigation algorithm as arrows. Begin by initiating the
CoppeliaSim simulation and launching the appropriate file.
Then, use the "2D Nav Goal" tool in RViz to designate the
destination on the map. This action prompts the robot to plan
the optimal path, navigate around obstacles, and reach the
target point, as depicted in Figure 6.

Figure 6. Robot navigation. (a) nav_goal. (b) Navigating.

Alternatively, by using the directly publish the target

point coordinates and pose to move_base by executing the

Journal of Robotics Research (JRR) 11

Moshayedi et al, Evaluating OMNI Robot Navigation with SLAM in CoppeliaSim: Hemangiomas and Nonhomogeneous

Paths

command (“rostopic pub /move_base_simple/goal

geometry_msgs/PoseStamped '{header: {frame_id:

"map"}, pose: {position: {x: 3.0, y: 0, z: 0}, orientation:

{x: 0, y: 0, z: 0, w: 1}}}”) in the terminal. This command

instructs the robot to navigate to the coordinates [x: 3.0, y: 0,

z: 0] within the map coordinate system, with the target pose

already specified. The robot will move to the specified

coordinates, reaching the target pose as instructed.

TABLE 1. MOVE_BASE PARAMETER SETTINGS.

BASE_LOCAL_PLANNER_PARAMS(A),COSTMAP_COMMON_

PARAMS(B), GLOBAL_COSTMAP_PARAMS(C),

LOCAL_COSTMAP_PARAMS(D).

Parameter Value

A

controller_frequency 3

max_vel_x , max_vel_y 0.2,-0.6

min_vel_x, min_vel_y 0.1, -0.2

max_vel_theta,max_in_place_vel_theta 2

min_vel_theta, min_in_place_vel_theta -2

escape_vel, acc_lim_x, acc_lim_y -0.1, 2.5

acc_lim_theta ,holonomic_robot 2, true

yaw_goal_tolerance 0.17

xy_goal_tolerance 0.1

latch_xy_goal_tolerance true

B

obstacle_range, raytrace_range 2.5

footprint
[[0, 0.25], [0.2, 0.2], [0.25, 0],

[0.2, -0.2],[0, -0.25], [-0.2, -

0.2], [-0.25, 0], [-0.2, 0.2]]

inflation_radius 0.2

resolution 0.01

observation_sources laser_scan_sensor

laser_scan_sensor

{sensor_frame: laser_link,

data_type: LaserScan,

topic: /scan, marking: true,

clearing: true}

C

global_frame , robot_base_frame Map, base_link

update_frequency publish_frequency 2.0, 1.0

static_map true

rolling_window false

D

global_frame, robot_base_frame Map, base_link

update_frequency publish_frequency 5.0, 2.0

static_map rolling_window False, true

Width, height 5

To complete this step, several tests were conducted to

control the robot platform based on the parameters listed in

Table 1. The robot was operated using a computer keyboard

to control and verify its movement (Figure 7).

Figure 7. The navigation test over the keyboard and testing the move

base parameter.(A) the robot movement (B) the robot movement

plot

7) Step 7. Control System Design :

The control loop for the Robot platform shown in Figure 8.

Figure 8.Omni robot Navigation system Block diagram.

As the Figure 8 shown three parts of CoppeliaSim, Ros

and Python used to control the robot, The Lua in

CoppeliaSim used to Lua scripting in CoppeliaSim empowers

users to extend the platform's capabilities beyond basic

simulation, facilitating advanced control, automation, and

integration tasks crucial for robotics research, development,

and education. ROS enhances simulation integration and

control, while Python extends Coppeliasim's capabilities

through flexible scripting for automation and customization,

making both essential tools in robotics research and

development within CoppeliaSim environments[19].The

robot's Lua control script initially publishes two topics, /scan

and /odom, conveying distance information from LIDAR

detection in CoppeliaSim and the robot's current attitude

information to the ROS move_base function package.

Simultaneously, a Python script publishes the target point's

coordinates and the robot's pose to move_base via the

/move_base/goal topic. Within move_base, this data is

analyzed to plan a motion path, and the resulting real-time

corrected velocity information is published to the /cmd_vel

ROS topic. The robot's control script then subscribes to this

topic to obtain velocity information, thus configuring the

motors and enabling robot navigation movement.

8) Step 8. Environment Configuration:

As mentioned before , the designed robot is planned to be

tested on two distinct paths: the Hemangiomas Path,

represented by the Circle Path with the (length 1573 cm

,radius of 2.477m), and the Non-Hemangiomas Path,

represented by the Special Path (length 1390 cm) as it shown

in Figure 9 and Table 2.

Journal of Robotics Research (JRR) 12

Moshayedi et al, Evaluating OMNI Robot Navigation with SLAM in CoppeliaSim: Hemangiomas and Nonhomogeneous

Paths

Figure 7.Robomot movement over Hemangiomas (A,B) and non-

Hemangiomas(C,D) Path map in CoppeliaSim. Points S, A, B, C,

D, and F have specific coordinates, while obstacles O1 to O5 are

positioned at different locations.

TABLE 2. HEMANGIOMAS(H) (CIRCLE PATH: 1573 CM),

NON_HEMANGIOMAS(NH) (SPECIAL PATH : 1390 CM)

POINT NAME , LOCATION AND COORDINATION IN METER ,

OBSTACLE DIAMETER: 20 CM HEIGHT: 60 CM.

Points H_Path (x,y) m NH_Path (x,y) m

K
ey

P

o
in

t

S (0.00,0.00) (0.00,0.00)

A (2.00 , 0.00) (2.00 , 0.00)

B (4.00, -1.00) (4.00, -1.00)

C (4.00, -3.50) (4.00, -3.50)

D (0.00, -3.50) (0.00, -3.50)

F (0.00,0.00) (-1.00, -0.50)

O
b

st
a

c
le

s

O1 (1.23, 2.10) (-1.00, 2.00)

O2 (2.38, 0.50) (1.00,1.50)

O3 (1.005, -2.225) (2.00, -0.25)

O4 (-1.72, -1.725) (0.025,-1.50)

O5 (-1.695, 1.725) (-2.50, 0.00)

Table 2 shows the coordinates of key points and obstacles in

both map environments. Points S, A, B, C, D, and F have

specific coordinates, while obstacles O1 to O5 are positioned

at different locations.

III. EXPERIMENTS RESULT

Based on the simulated OMNI robot platform in the

COPPELIASIM environment, an experiment was conducted

to evaluate the robot's performance in the presence of

obstacles over two afordement path with the different

speed.As the Figure 10 (A and C) shown During the test, the

robot's speed varied from 10 cm/s in increments of 5 cm/s.

Successful path tracking was reported at each speed. Four key

parameters were assessed: Running Time (seconds), Average

Velocity (cm/s), Average Body Change (rad), and Average

Error (cm). Each path was tested 10 times, with the results

summarized in Table 3 and illustrated in Figure 10 (B and D).

Figure 8. Omnirobot different Path tracking over different speed(A

and C). Omni robot performance with respect to Error and Velocity

over Hemangiomas and Non_Hemangiomas (B and D).

TABLE 3.HEMANGIOMAS (H) LENGTH 1537 CM AND

NON_HEMANGIOMAS (NH) PATH LENGTH 1390 CM WITH

FIVE OBSTACLES SUCCESSFUL PATH TRACKING.

SECOND(S), AVERAGE_VELOCITY(AV), AVERAGE _ERROR (

AE), AVERAGE _BODY CHANGE(ABC).

Velocity

(cm/s)

Running Time (s) AV (cm/s)

H NH H NH

10 111.3 130.39 13.81 10.66

15 108.4 134.46 14.17 10.34

20 117.2 128.46 13.11 10.82

25 124.6 143.91 12.33 9.66

Velocity

(cm/s)

ABC (rad) AE (cm)

H NH H NH

10 -0.069 -0.165 40.66 18.64

15 -0.271 -0.13 40.12 19.25

20 -0.215 0.09 34.86 22.3

25 -0.056 0.23 30.7 20.99

As the Table 3 results shown, the robot exhibited different

movement trajectories across various paths. Based on the

importance of velocity and path tracking error, an

Journal of Robotics Research (JRR) 13

Moshayedi et al, Evaluating OMNI Robot Navigation with SLAM in CoppeliaSim: Hemangiomas and Nonhomogeneous

Paths

investigation was initiated using statistical analysis to

evaluate these parameters and shown in Table 4 and Figure

10 (B and D).As it depicted in Figure 10, the average error for

the Hemangiomas path represented by circle is higher than

that for the non-Hemangiomas(special) path at all robot

velocities. Moreover, although the average error for the

Hemangiomas path decreases as robot velocity increases, the

average error for the non-Hemangiomas path shows a

fluctuating pattern under the Hemangiomas path. A similar

trend is observed for average velocity based on robot velocity

and the paths. Therefore, inferential statistics are required to

draw conclusions. As it shown in Table 4 and Figure 12,

Considering the Velocity parameter: In the Hemangiomas

Path, the robot moves faster with a mean velocity of 13.355

units, but with greater variability (standard deviation of

0.81279 units) and less precision (standard error of the mean

at 0.40640 units).

TABLE 4 . HEMANGIOMAS(H) AND NON_HEMANGIOMAS(

NH) PATH AND OMNI ROBOT PERFORMANCE OVER

VELOCITY AND ERROR

In contrast, in the Non-Hemangiomas Path, the robot

moves slower with a mean velocity of 10.370 units,

exhibiting less variability (standard deviation of 0.51368

units) and greater precision (standard error of the mean at

0.25684 units).Considering the Error parameter: In the

Hemangiomas Path, the robot has higher positional errors

with a mean error of 36.58500 units, more variability

(standard deviation of 4.715602 units), and less precision

(standard error of the mean at 2.357801 units). In the Non-

Hemangiomas Path, the robot has lower positional errors with

a mean error of 20.29500 units, less variability (standard

deviation of 1.666743 units), and greater precision.

Figure 9.The robot performance analysis over different path VS

error and speed in path tracking mission

IV. CONCLUSION

This paper describes the steps involved in simulating and
implementing an OMNI robot in CoppeliaSim, focusing on
path tracking over Hemangiomas and Non-Hemangiomas
paths. The analysis centers on two key parameters: average
error and average velocity with the help of Levene's Test for
Equality of Variances and t-test statistical analysis .Path
tracking for an OMNI robot using SLAM as the main target
of this paper involves navigating through a pre-mapped
environment while continuously updating the robot's position
and orientation. The effectiveness of the OMNI robot's path
tracking is assessed by measuring the average positional error
and the average velocity, ensuring precise and efficient
movement along the designated paths. As the results shown,
Over the Non-Hemangiomas Path robot Provides a slower
but more consistent and precise navigation experience with
significantly lower errors, making it preferable for
applications where accuracy is crucial. Overall, the choice of
path type should consider the trade-off between speed and
accuracy, with the Hemangiomas path favoring speed and the
non-Hemangiomas path favoring precision. As expected, the
mean velocity and error are higher for the circle path
compared to the special path. Based on Table 2, these
differences are significant at the 5 percent level (P-value =
0.001). Analysis of Independent Samples T-Test Results
concerning the Velocity shows over the Levene's Test for
Equality of Variances. The significance value (0.285) is
greater than 0.05, indicating that the assumption of equal
variances holds true. In the equal variation assumed, the test
shows a significant difference in velocity between the two
path types, with p-value 0.001, well below the threshold of
0.05. The mean velocity difference of 2.98500 units is
statistically significant, with the confidence interval
indicating that the true mean difference lies between 1.80864
and 4.16136 units (assuming equal variances. With respect to
Error, Levine’s Test for Equality of Variances shows that the
significance value (0.035) is less than 0.05, indicating that the
assumption of equal variances does not hold true. By using
the t-test for Equality of Means, in case not assuming equal
variances, shows a significant difference in error between the
two path types, with p-value 0.004, well below the threshold
of 0.05. The mean error difference of 16.290 units is
statistically significant, with the confidence interval
indicating that the true mean difference lies between 9.15066
and 23.42934 units. These results indicate that while the robot
moves faster on the Circle path, it also incurs significantly
higher positional errors compared to the Special path. This
trade-off between speed and accuracy should be considered
when choosing path types for specific applications. As the
result shows, according to the average speed of 10.37 for a
specific route, with 95% confidence, it can be stated that the
speed on the circular route is 20% to 40% higher than on the
non-homogeneous path. When comparing the amount of error
in path tracking, the error has increased by 50% to 100% on
the homogeneous path. This indicates that although the speed
is lower on the non-homogeneous path, the accuracy of path
tracking is better. Overall, the test results show that while the
SLAM method can successfully reach the initial and final
points, it has limitations in achieving complete route tracking
according to the designed path, especially in the presence of
obstacles. It appears that integrated methods might offer a
solution, and this approach will be considered for future work
in this research.

Parameter
Path Mean

Std.
Deviation

Std. Error
Mean

Velocity H 13.3550 0.81279 0.40640
NH 10.3700 0.51368 0.25684

Error H 36.58500 4.715602 2.357801
NH 20.29500 1.666743 0.833372

Journal of Robotics Research (JRR) 14

Moshayedi et al, Evaluating OMNI Robot Navigation with SLAM in CoppeliaSim: Hemangiomas and Nonhomogeneous

Paths

V. REFERENCE

[1] Ioan Doroftei, V. Grosu, and Veaceslav Spinu, “Design and Control of
an Omni-directional Mobile Robot,” Springer eBooks, pp. 105–110,
Aug. 2008, doi: https://doi.org/10.1007/978-1-4020-8737-0_19.

[2] A. Eirale, M. Martini, L. Tagliavini, D. Gandini, M. Chiaberge, and G.
Quaglia, “Marvin: an Innovative Omni-Directional Robotic Assistant
for Domestic Environments,” Sensors, vol. 22, no. 14, p. 5261, Jul.
2022, doi: https://doi.org/10.3390/s22145261.

[3] C. Prados Sesmero, L. R. Buonocore, and M. Di Castro,
“Omnidirectional Robotic Platform for Surveillance of Particle
Accelerator Environments with Limited Space Areas,” Applied
Sciences, vol. 11, no. 14, p. 6631, Jul. 2021, doi:
https://doi.org/10.3390/app11146631.

[4] Ata Jahangir Moshayedi, Atanu Shuvam Roy, L. Liao, Amir Sohail
Khan, Amin Kolahdooz, and A. Eftekhari, “Design and Development
of Foodiebot Robot: from Simulation to Design,” IEEE access, pp. 1–
1, Jan. 2024, doi: https://doi.org/10.1109/access.2024.3355278.

[5] A. Eirale, M. Martini, L. Tagliavini, D. Gandini, M. Chiaberge, and G.
Quaglia, “Marvin: an Innovative Omni-Directional Robotic Assistant
for Domestic Environments,” Sensors, vol. 22, no. 14, p. 5261, Jul.
2022, doi: https://doi.org/10.3390/s22145261.

[6] Mostafa Mo. Massoud, A. Abdellatif, and Mostafa, “Different Path
Planning Techniques for an Indoor Omni-Wheeled Mobile Robot:
Experimental Implementation, Comparison and Optimization,”
Applied sciences, vol. 12, no. 24, pp. 12951–12951, Dec. 2022, doi:
https://doi.org/10.3390/app122412951.

[7] B. Fares, Haïfa Souifi, Mohsen Ghribi, and Yassine Bouslimani,
“Omnidirectional Platform for Autonomous Mobile Industrial Robot,”
2021 IEEE 3rd Eurasia Conference on IOT, Communication and
Engineering (ECICE), Oct. 2021, doi:
https://doi.org/10.1109/ecice52819.2021.9645621.

[8] D. Nister, O. Naroditsky and J. Bergen, "Visual odometry,"
Proceedings of the 2004 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2004. CVPR 2004.,
Washington, DC, USA, 2004, pp. I-I, doi:
10.1109/CVPR.2004.1315094.

[9] P. Jain, "Odometry and motion planning for omni drive robots," 2014
Innovative Applications of Computational Intelligence on Power,
Energy and Controls with their impact on Humanity (CIPECH),
Ghaziabad, India, 2014, pp. 164-168, doi:
10.1109/CIPECH.2014.7019080..

[10] P. Li, B. Leng and H. Fu, "Autonomous positioning of omnidirectional
mobile robot based on visual inertial navigation," 2020 39th Chinese
Control Conference (CCC), Shenyang, China, 2020, pp. 3753-3758,
doi: 10.23919/CCC50068.2020.9189018.

[11] Y. Yu, W. Gao, C. Liu, S. Shen and M. Liu, "A GPS-aided
Omnidirectional Visual-Inertial State Estimator in Ubiquitous
Environments," 2019 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Macau, China, 2019, pp. 7750-
7755, doi: 10.1109/IROS40897.2019.8968519.

[12] T. Yokota, K. Watanabe, K. Kobayashi and Y. Kurihara, "Development
of visual odometry component by using omni-directional camera,"
SICE Annual Conference 2011, Tokyo, 2011, pp. 2149-2151.

[13] D. Burschka and G. D. Hager, "V-GPS(SLAM): vision-based inertial
system for mobile robots," IEEE International Conference on Robotics
and Automation, 2004. Proceedings. ICRA '04. 2004, New Orleans,
LA, USA, 2004, pp. 409-415 Vol.1, doi:
10.1109/ROBOT.2004.1307184.

[14] A. M. Derbas and T. A. Tutunji, "SLAM Algorithm for Omni-
Directional Robots based on ANN and EKF," 2023 IEEE Jordan
International Joint Conference on Electrical Engineering and
Information Technology (JEEIT), Amman, Jordan, 2023, pp. 80-86,
doi: 10.1109/JEEIT58638.2023.10185708.

[15] A. S. Kundu, O. Mazumder, A. Dhar, P. K. Lenka, and S. Bhaumik,
“Scanning Camera and Augmented Reality Based Localization of
Omnidirectional Robot for Indoor Application,” Procedia Computer
Science, vol. 105, pp. 27–33, 2017, doi:
https://doi.org/10.1016/j.procs.2017.01.183.

[16] Durst, V., Hagel, D., Vander, J., Blaich, M., Bittel, O. (2011).
Designing an Omni-Directional Infrared Sensor and Beacon System for
the Eurobot Competition. In: Obdržálek, D., Gottscheber, A. (eds)
Research and Education in Robotics - EUROBOT 2011. EUROBOT
2011. Communications in Computer and Information Science, vol 161.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-
21975-7_10

[17] Massoud, M.M.; Abdellatif, A.; Atia, M.R.A. Different Path Planning
Techniques for an Indoor Omni-Wheeled Mobile Robot: Experimental
Implementation, Comparison and Optimization. Appl. Sci. 2022, 12,
12951. https://doi.org/10.3390/app122412951].

[18] Z. Wang and M. Feng, "Research on Omnidirectional SLAM based on
Vehicle-mounted Multi-Camera System," 2021 6th International
Symposium on Computer and Information Processing Technology
(ISCIPT), Changsha, China, 2021, pp. 798-802, doi:
10.1109/ISCIPT53667.2021.00167

[19] .A. J. Moshayedi, S. M. Zanjani, D. Xu, X. Chen, G. Wang and S.
Yang, "Fusion BASED AGV Robot Navigation Solution Comparative
Analysis and Vrep Simulation," 2022 8th Iranian Conference on Signal
Processing and Intelligent Systems (ICSPIS), Behshahr, Iran, Islamic
Republic of, 2022, pp. 1-11, doi:
10.1109/ICSPIS56952.2022.10044044

[20] Azizi, M.R.; Rastegarpanah, A.; Stolkin, R. Motion Planning and
Control of an Omnidirectional Mobile Robot in Dynamic
Environments. Robotics 2021, 10, 48.
https://doi.org/10.3390/robotics10010048

[21]. A. Jahangir Moshayedi, K. S. Reza, A. Sohail Khan, and A. Nawaz, “

Integrating Virtual Reality and Robotic Operation System (ROS) for
AGV Navigation”, EAI Endorsed Trans AI Robotics, vol. 2, Apr. 2023.

