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Abstract— This study aims to enhance the accuracy and 

efficiency of Omni robots in navigation, reducing errors and 

resource use to improve safety and task completion in various 

applications. Utilizing CoppeliaSim (Vrep) for simulation, the 

research focuses on the Omni robot's performance over 

homogeneous and non-homogeneous paths using SLAM. Key 

parameters such as running time, average velocity, body change, 

and error are analyzed with statistical methods to ensure robust 

findings. Results show a direct relationship between speed and 

tracking error, highlighting the need for optimized speed 

management. The study provides insights into the robot's 

performance under different conditions, offering valuable data 

for further optimization. This research contributes to the 

development of safer, more reliable robotic systems with 

applications in industrial automation, healthcare, and service 

robotics. Virtual prototyping reduces development costs and 

risks, promoting the adoption of advanced robotic technologies 

and enhancing productivity and safety in various fields. 

Keywords— OMNI robot platform, CoppeliaSim, Vrep, 

Simultaneous Localization and Mapping, SLAM, Levene's Test 

,Independent samples t-test 

 

I. INTRODUCTION  

The term "omni" means "all" or "every," which is why 

OMNI robots are named to emphasize their ability to move in 

any direction—forward, backward, sideways, and 

rotationally  without changing orientation[1]. This unique 

capability is typically achieved through specialized wheels, 

such as Mecanum or omni wheels, allowing the robot to 

navigate complex environments with high maneuverability 

and flexibility[2]. This design enhances precision and 

efficiency in tasks, improves navigation in intricate settings, 

and increases versatility and adaptability for various 

applications[3]. Path tracking is a vital task in  robotic science 

to optimizes efficiency by following the most optimal routes, 

reducing travel time and energy consumption[4][5].Ensuring 

predictable movements enhances human-robot interaction 

and minimizes errors[6]. Consistent path tracking supports 

reliable performance and repeatability, essential for tasks like 

industrial automation and logistics. The omni platform's 

special design makes path tracking essential to ensure 

precision and accuracy in executing tasks, navigating 

obstacles, and maintaining safety.  As the review paper 

shows, there are eight methods for the OMNI robot platform 

that can be selected based on the application's requirements 

for precision, robustness, computational complexity, and 

environmental conditions[7]. These methods can be 

described as follows: Odometry: Uses data from wheel 

encoders to estimate the robot's position and orientation by 

integrating the motion over time. This method is simple and 

requires minimal computational resources. However, it is 

prone to errors accumulating over time due to wheel slippage 

and uneven surfaces[8][9]. Inertial Navigation System 

(INS): Utilizes accelerometers and gyroscopes to track the 

robot's motion. The data is integrated to estimate the position 

and orientation. This method can provide high-frequency 

updates and is immune to wheel slippage, but sensor drift can 

cause errors to accumulate over time[10]. Global Navigation 

Satellite System (GNSS): Uses GPS or other satellite-based 

systems to determine the robot's position. It provides absolute 

positioning with good accuracy in open environments but is 

limited by signal availability and accuracy in indoor or 

obstructed environments[11]. Visual Odometry: Uses 

cameras to track features in the environment and estimate the 

robot's motion. This method can provide accurate position 

estimates and works well in environments with distinct visual 

features. However, it is computationally intensive and can be 

affected by changes in lighting or featureless 

environments[12]. Simultaneous Localization and 

Mapping (SLAM): Builds a map of the environment while 

simultaneously keeping track of the robot's position within 

the map. This method can provide accurate localization in 

unknown environments and handle dynamic changes but 

requires significant computational resources and can be 

complex to implement[13][14]. LIDAR-Based Tracking: 

Uses a LIDAR sensor to scan the environment and track the 

robot's position relative to detected features. It offers high 

accuracy and robustness to changes in lighting but can be 

expensive and data processing can be computationally 

intensive[15].   Infrared (IR) Sensors: Uses IR sensors to 

detect the position relative to known beacons or markers. This 

method is simple and cost-effective for specific applications 

but has limited range and can be affected by environmental 

conditions[16]. Path Planning Algorithms: Uses algorithms 

like A*, Dijkstra, or Rapidly-exploring Random Tree (RRT) 
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to plan the path based on a known map and update the robot's 

position using various sensors. This method can find optimal 

paths and handle complex environments but requires prior 

knowledge of the environment and can be computationally 

intensive[17]. The review of previous studies shows that 

among these methods, SLAM is the most popular due to its 

ability to handle dynamic and unknown environments 

effectively[18]. Therefore, SLAM is selected as the main 

focus of this paper for tracking the path.  Besides, in this 

research  CoppeliaSim (formerly named Vrep) as the highly 

ranked simulator among robotics simulators due to its 

flexibility, extensive features, and real-time capabilities 

selected to implement the robot platform. CoppeliaSim stands 

alongside Gazebo and Webots, offering robust support for 

complex robotic simulations. Its high ranking is attributed to 

its comprehensive tools and versatility[19]. 

The main contributions of the paper are listed as follows: 

Design and simulation of a real sized along with all  features 

for  OMNI robot platform in CoppeliaSim.Utilization of ROS 

and SLAM for path tracking missions. Comparison of the 

robot's performance on two types of paths, homogeneous and 

non-homogeneous, including obstacle navigation, to evaluate 

and compare the robot's performance with the help of 

inferential statistics (Levene's Test for Equality of Variances 

and t-test).The authors believe that the performance of the 

OMNI platform for navigating paths, hemangiomas, and 

nonhomogeneous studies in CoppeliaSim demonstrates 

advanced capabilities and improving safety and task 

completion in various applications. By leveraging 

CoppeliaSim (Vrep) as a robust simulation environment, the 

paper facilitates rapid prototyping and validation of robotic 

algorithms, significantly reducing development costs and 

risks before real-world deployment. This provides 

researchers with valuable insights to enhance the study of the 

OMNI platform in SLAM applications which based on 

researcher available resources reported rarely for this 

platform in the CoppeliaSim. The paper arrangement is as 

follows: Section 2, Omni Platform Design and 

Implementation, contains all steps from the implementation 

of real platform to the control and navigation of the robot, 

including the environment configuration in CoppeliaSim. 

Section 3, Experimental Results, presents the results of 

experiments conducted on the designed hemangiomas and 

nonhomogeneous paths. Section 4, Conclusion, provides a 

summary of the key findings and implications of the study. 

II. OMNI PLATFORM DESIGN AND IMPLEMENTATION  

 
2.1 Kinematics analysis of OMNI platform 

An OMNI structure, in the context of robotics, typically 

refers to an omnidirectional robotic platform. This platform 

is characterized by its ability to move in any direction without 

needing to change its orientation. It features a chassis, 

individual motors for each wheel, various sensors (Lidar 

sensor in this research), and a control system for navigation 

and SLAM. This structure is highly maneuverable and 

suitable for applications needing precise navigation and 

control as it is shown in shown in Figure 1( A and B).  An 

omnidirectional robot with four wheels can be 

mathematically modeled to understand its movement and 

control dynamics. The robot's coordinate system is centered 

at the chassis, with four omnidirectional wheels labeled 

𝜔1,𝜔2,𝜔3 and 𝜔4, positioned counterclockwise from the upper 

left. 

 
Figure 1.OMNI wheel and motion structure. (a) Real OMNI wheel. 

(b) Motion structure of the wheel. Figure 4 Kinematics analysis. (a) 

Chassis analysis. (b) Wheel speed analysis. 

The key parameters include the 𝑣𝑤 represent  wheel linear 
velocities(Equation.(1)), ωw indicated wheel angular 
speeds(Equation.(2)) and 𝑣𝑐  shows chassis linear 
velocity(Equation.(3)). 

𝑣𝑤=[𝑣1,𝑣2,𝑣3,𝑣4]𝑇                                           (1) 

𝜔𝑤=[𝜔1,𝜔2,𝜔3,𝜔4]𝑇                                        (2) 

𝑣𝑐=[𝑣𝑥,𝑣𝑦]𝑇                                                  (3)  

Where in (Equation.(1)), v1,v2,v3, and v4 represent the linear 
velocity of one of the four wheels and in Wheel Angular 
Speeds (ωw), Each element ω1,ω2,ω3, and ω4 represents the 
angular velocity of one of the four wheels. Chassis Linear 
Velocity (vc), The elements vx and vy represent the velocity 
components of the chassis along the x and y axes, 
respectively. This vector describes the overall translational 
motion of the robot. chassis angular velocity ωc , wheel radius 
R, and the distance from the chassis center to the wheels r as 
it is shown in Figure 1(C and D). The kinematic equations 
that relate the chassis velocity to the individual wheel 
velocities for a 45-degree wheel configuration are given by 
the transformation matrix (Equation.(4)). 

[

v1

v2

v3

v4

] =
1

R
∙ [

1 −1 −r
1 1 r
 1 −1 r
1    1 −r

] ∙ [

vx
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]                    (4) 

To find the chassis velocities from the wheel velocities, 

the inverse transformation matrix (Equation.(5)). 
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1
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] ∙ [

v1

v2

v3

v4
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(5) 

These equations allow for the control and analysis of the 
robot's movements. The chassis linear velocities vx and vy 
represent the robot's movement along the x and y axes, while 
the chassis angular velocity ωc represents the rotational speed 
of the chassis. The wheel velocities v1,v2,v3,v4 are derived 
from the combined chassis movements and rotations, 
influenced by the wheel radius R and the distance r[20]. This 
model is essential for precise navigation and control in 
applications such as SLAM. 
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2.2 Vrep simulation and implementation 

As shown in Figure 2, simulating the OMNI robot 

platform involves considering mechanical, electrical, and 

control aspects. The design of an OMNI robot follows these 

steps: mechanical and electrical design, sensor performance 

simulation, integration, ROS initialization with CoppeliaSim 

(Vrep), mapping the robot using classical SLAM with 

GMapping and RViz, setting Move Base parameters, control 

system design, and environment configuration. Each of these 

steps is described in detail below: 

1) Step 1: Mechanical and electrical design: The mechanical 
and electrical design process begins with the construction of 
an OMNI wheel model. To simplify and efficiently reproduce 
the omnidirectional wheel characteristics, a set of double-
jointed ball-wheel structures is designed, considering its 
complex structure and dimensions (The radius of 5cm and 
Thickness of 6cm). Then a square pillar with dimensions of 
25 cm*25 cm serves as the chassis. After that four 
omnidirectional wheels are then connected to the chassis at 
specific angles, as illustrated in Figure 2.  

 

 

Figure 2. Build an OMNI robot platform. (A&B) wheel 

disassembled   (C) Chaises (D,E,F) Robot Chassis holder.(G) robot 

Side view. (H) robot Right view (I) robot Top view. 

As Figure 2 depicts the angles between neighboring 

wheels are set at 90 degrees. Then along the wheel and 

chassis, Completing the robot body structure involves 

integrating the frame, PCB board, and lidar model. It should 

be mentioned that all dimensions are based on the actual 

specifications of the previously implemented OMNI robot 

platform. 

2) Step 2. Sensor Performance Simulation Section: This 

section focuses on simulating the performance of the Lidar 

Sensor as the obstacle avoidance and navigator robot 

integrated into the OMNI robot platform, including their 

accuracy, response times, and overall effectiveness in real-

world scenarios. Then, the radar scripting for the RPLIDAR 

A1 sensor was finalized by referencing the Hokuyo URG lidar 

driver script available in the CoppeliaSim model library. 

Subsequently, the sensor's performance was thoroughly 

tested, as illustrated in Figure 3. 

 

 

Figure 3.The Lidar sensor RPLIDAR A1 model and test A)The 

initial model (B,C) the lidar test ,(D,E) The robot movement. 

3) Step 3. Integration:   The final step involved assembling 

the platform, ensuring precise alignment and stability of 

mechanical components according to the design 

specifications. Following this, all electrical components such 

as motors, sensors, and controllers were integrated according 

to the real design platform. The integrated system was 

thoroughly tested for functionality and adjusted as needed to 

ensure optimal performance. 

4) Step 4:  ROS Initialization with CoppeliaSim : In order 

to navigate the robot Ros [21] used to control the Robot 

platform and then  Installing ROS involves confirming ROS 

Kinetic installation on Ubuntu 16.04, launching the ROS 

Master using the command 'roscore' ,starting CoppeliaSim 

after roscore is running, and verifying successful 

communication by checking the message "plugin 

'ROSInterface': load succeeded. 

 

5) Step 5 : Mapping the Robot Using Classical SLAM with 

GMapping and RViz: The process involves mapping the robot 

using the classical SLAM algorithm with GMapping and RViz 

for accurate navigation and positioning in the simulated 

environment. Generate a map using lidar scan data in RViz 

and enable navigation and positioning. Transmit real-time 
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pose data from the robot in the CoppeliaSim simulation to 

ROS in the odom format and broadcast the coordinate 

transformation between the robot and the odom. Subscribe to 

pose data in RViz, including three-dimensional coordinates, 

directional angle, linear velocity, and rotational angular 

velocity. Establish initial pose and synchronization using a 

Dummy object, synchronize with the lidar coordinate system, 

perform coordinate transformations, and publish results to 

ROS. Invoke the GMapping function package in ROS for 

SLAM construction. Then, finally to draw the environment 

map enable the ROS [21].  

 

Remote keyboard function and subscribe to the /cmd_vel 

topic in the robot script for keyboard control. Manipulate the 

robot to move in the map and complete the map drawing, 

showing the movement and drawing process in RViz in real 

time. Save the map using the command rosrun map_server 

map_saver in the terminal, resulting in the map.pgm picture 

file. After finishing all to draw the map the enable the ROS 

remote keyboard function to control the robot. In the robot 

script, subscribe to the /cmd_vel topic to receive keyboard 

control commands. 

 

 
Figure 4.Lidar test A,B)The test in a simple chamber (C,D)with 

various obstacles. (E,F)in a chamber with various obstacles. 

Next, manipulate the robot using the keyboard to move it 

within the map, which will help in completing the map 

drawing. The movement and map drawing process will be 

shown in real time in RViz. Once the map is created, execute 

the following command in the terminal to save the map: 

rosrun map_server map_saver. This step  will generate a 

map.pgm picture file, as illustrated in Figure 4. 

 
Figure 5. Map construction (CoppeliaSim).Cartography. (a) 

GMapping running and Map Hemangiomas path in the form of 

Circle ,(C,D) GMapping running and Map non-Hemangiomas path 

in the form of  Special Path. 

Figure 5 illustrates the mapping arena for both 
Hemangiomas and non-Hemangiomas paths, utilizing 
GMapping in the CoppeliaSim simulator. 

   6) Step 6 : Setting Move Base Parameters:  The move_base 
package plays a crucial role in ROS navigation, handling 
global and local path planning by subscribing to Lidar, map 
data, and Adaptive Monte Carlo Localization (AMCL) 
positioning data. AMCL is a probabilistic algorithm used for 
mobile robot localization, which estimates the robot's    
position and orientation  based on sensor data[19]. It translates 
these paths into speed information, enabling efficient robot 
navigation. Essential parameter files for 
move_baseinclude:base_local_planner_params,yaml 
costmap_common_params.yaml,global_costmap_params.ya
ml,local_costmap_params.yaml,each contributing to specific 
aspects of navigation. Table 1 summarizes  the parameter 
settings for these files, defining key configurations for  
move_base functionality. Finally, to test target point 
navigation using RViz and the move_base topic control, start 
by configuring the relevant startup files following the  
move_base topic format.Add the path plug-in to display the 
pre-planned and action paths in RViz, including the pose 
indicator. Additionally, display the results of the particle filter 
in the navigation algorithm as arrows. Begin by initiating the 
CoppeliaSim simulation and launching the appropriate file. 
Then, use the "2D Nav Goal" tool in RViz to designate the 
destination on the map. This action prompts the robot to plan 
the optimal path, navigate around obstacles, and reach the 
target point, as depicted in Figure 6. 

 

Figure 6. Robot navigation. (a) nav_goal. (b) Navigating. 

Alternatively, by using the  directly publish the target 

point coordinates and pose to move_base by executing the  
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command (“rostopic pub /move_base_simple/goal 

geometry_msgs/PoseStamped '{header: {frame_id: 

"map"}, pose: {position: {x: 3.0, y: 0, z: 0}, orientation: 

{x: 0, y: 0, z: 0, w: 1}}}”) in the terminal. This command 

instructs the robot to navigate to the coordinates [x: 3.0, y: 0, 

z: 0] within the map coordinate system, with the target pose 

already specified. The robot will move to the specified 

coordinates, reaching the target pose as instructed. 

 

TABLE 1. MOVE_BASE PARAMETER SETTINGS. 

BASE_LOCAL_PLANNER_PARAMS(A),COSTMAP_COMMON_

PARAMS(B), GLOBAL_COSTMAP_PARAMS(C), 

LOCAL_COSTMAP_PARAMS(D). 

Parameter   Value 

A
 

controller_frequency 3 

max_vel_x , max_vel_y 0.2,-0.6 

min_vel_x, min_vel_y 0.1, -0.2 

max_vel_theta,max_in_place_vel_theta 2 

min_vel_theta, min_in_place_vel_theta -2 

escape_vel, acc_lim_x, acc_lim_y -0.1, 2.5 

acc_lim_theta ,holonomic_robot 2, true 

yaw_goal_tolerance 0.17 

xy_goal_tolerance 0.1 

latch_xy_goal_tolerance true 

B
 

obstacle_range, raytrace_range 2.5 

footprint 
[[0, 0.25], [0.2, 0.2], [0.25, 0], 

[0.2, -0.2],[0, -0.25],  [-0.2, -

0.2], [-0.25, 0], [-0.2, 0.2]] 

inflation_radius 0.2 

resolution 0.01 

observation_sources laser_scan_sensor 

laser_scan_sensor 

{sensor_frame: laser_link, 

data_type: LaserScan, 

topic: /scan, marking: true, 

clearing: true} 

C
 

global_frame , robot_base_frame Map, base_link 

update_frequency publish_frequency 2.0, 1.0 

static_map true 

rolling_window false 

D
 

global_frame, robot_base_frame Map, base_link 

update_frequency publish_frequency 5.0, 2.0 

static_map rolling_window False, true 

Width, height 5 

To complete this step, several tests were conducted to 

control the robot platform based on the parameters listed in 

Table 1. The robot was operated using a computer keyboard 

to control and verify its movement (Figure 7). 

 

 

Figure 7. The navigation test over the keyboard and testing the move 

base parameter.(A) the robot movement (B) the robot movement 

plot  

7) Step 7. Control System Design : 

The control loop for the Robot platform shown in Figure 8. 

 
Figure 8.Omni robot Navigation system Block diagram. 

As the Figure 8 shown three parts of CoppeliaSim, Ros 

and Python  used to control the robot, The Lua in 

CoppeliaSim used to Lua scripting in CoppeliaSim empowers 

users to extend the platform's capabilities beyond basic 

simulation, facilitating advanced control, automation, and 

integration tasks crucial for robotics research, development, 

and education. ROS enhances simulation integration and 

control, while Python extends Coppeliasim's capabilities 

through flexible scripting for automation and customization, 

making both essential tools in robotics research and 

development within CoppeliaSim environments[19].The 

robot's Lua control script initially publishes two topics, /scan 

and /odom, conveying distance information from LIDAR 

detection in CoppeliaSim and the robot's current attitude 

information to the ROS move_base function package. 

Simultaneously, a Python script publishes the target point's 

coordinates and the robot's pose to move_base via the 

/move_base/goal topic. Within move_base, this data is 

analyzed to plan a motion path, and the resulting real-time 

corrected velocity information is published to the /cmd_vel 

ROS topic. The robot's control script then subscribes to this 

topic to obtain velocity information, thus configuring the 

motors and enabling robot navigation movement.  

 

8) Step 8. Environment Configuration: 

As mentioned before , the designed robot is planned to be 

tested on two distinct paths: the Hemangiomas Path, 

represented by the Circle Path with the (length 1573 cm  

,radius of  2.477m), and the Non-Hemangiomas Path, 

represented by the Special Path (length 1390 cm) as it shown 

in Figure 9 and Table 2.  
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Figure 7.Robomot movement over Hemangiomas (A,B) and non-

Hemangiomas( C,D) Path map in CoppeliaSim. Points S, A, B, C, 

D, and F have specific coordinates, while obstacles O1 to O5 are 

positioned at different locations. 

TABLE 2. HEMANGIOMAS(H) (CIRCLE PATH: 1573 CM), 

NON_HEMANGIOMAS( NH)  ( SPECIAL PATH : 1390 CM)  

POINT NAME , LOCATION AND  COORDINATION IN METER , 

OBSTACLE DIAMETER: 20 CM HEIGHT: 60 CM. 

 
Points H_Path (x,y) m NH_Path (x,y) m 

K
ey

  
P

o
in

t 
  
 

S (0.00,0.00) (0.00,0.00)      

A (2.00 , 0.00) (2.00 , 0.00)    

B (4.00, -1.00) (4.00, -1.00)   

C (4.00, -3.50) (4.00, -3.50)  

D (0.00, -3.50) (0.00, -3.50)    

F (0.00,0.00) ( -1.00, -0.50 )   

O
b

st
a

c
le

s 
  

  

O1 (1.23, 2.10) ( -1.00, 2.00)     

O2 (2.38, 0.50 ) ( 1.00,1.50)   

O3 (1.005, -2.225)  (2.00, -0.25 )   

O4 (-1.72, -1.725 ) ( 0.025,-1.50)    

O5 (-1.695,  1.725 )  (-2.50, 0.00)    

Table 2 shows the coordinates of key points and obstacles in 

both map environments. Points S, A, B, C, D, and F have 

specific coordinates, while obstacles O1 to O5 are positioned 

at different locations. 

III. EXPERIMENTS RESULT  

Based on the simulated OMNI robot platform in the 

COPPELIASIM environment, an experiment was conducted 

to evaluate the robot's performance in the presence of 

obstacles over two afordement path with the different 

speed.As the Figure 10 (A and C) shown During the test, the 

robot's speed varied from 10 cm/s in increments of 5 cm/s. 

Successful path tracking was reported at each speed. Four key 

parameters were assessed: Running Time (seconds), Average 

Velocity (cm/s), Average Body Change (rad), and Average 

Error (cm).  Each path was tested 10 times, with the results 

summarized in Table 3 and illustrated in Figure 10 (B and D). 

 
Figure 8. Omnirobot different Path tracking over different speed(A 

and C). Omni robot performance with respect to Error and Velocity  

over  Hemangiomas and  Non_Hemangiomas (B and D). 

TABLE 3.HEMANGIOMAS (H)  LENGTH 1537 CM   AND 

NON_HEMANGIOMAS (NH) PATH LENGTH 1390 CM   WITH 

FIVE  OBSTACLES  SUCCESSFUL PATH TRACKING. 

SECOND(S), AVERAGE_VELOCITY(AV), AVERAGE _ERROR ( 

AE), AVERAGE _BODY CHANGE(ABC). 

 
Velocity 

(cm/s) 

Running Time (s) AV (cm/s) 

H  NH H  NH 

10 111.3 130.39 13.81 10.66 

15 108.4 134.46 14.17 10.34 

20 117.2 128.46 13.11 10.82 

25 124.6 143.91 12.33 9.66 

Velocity 

(cm/s) 

ABC (rad) AE    (cm) 

H  NH H  NH 

10 -0.069 -0.165 40.66 18.64 

15 -0.271 -0.13 40.12 19.25 

20 -0.215 0.09 34.86 22.3 

25 -0.056 0.23 30.7 20.99 

 

As the Table 3 results shown, the robot exhibited different 

movement trajectories across various paths. Based on the 

importance of velocity and path tracking error, an 
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investigation was initiated using statistical analysis to 

evaluate these parameters and shown in Table 4 and Figure 

10 (B and D).As it depicted in Figure 10, the average error for 

the Hemangiomas path  represented by circle is higher than 

that for the non-Hemangiomas(special) path at all robot 

velocities. Moreover, although the average error for the 

Hemangiomas path decreases as robot  velocity increases, the 

average error for the non-Hemangiomas path shows a 

fluctuating pattern under the Hemangiomas path. A similar 

trend is observed for average velocity based on robot velocity 

and the paths. Therefore, inferential statistics are required to 

draw conclusions. As it shown in Table 4 and Figure 12, 

Considering the Velocity parameter: In the Hemangiomas 

Path, the robot moves faster with a mean velocity of 13.355 

units, but with greater variability (standard deviation of 

0.81279 units) and less precision (standard error of the mean 

at 0.40640 units). 

 

TABLE 4 . HEMANGIOMAS( H) AND  NON_HEMANGIOMAS( 

NH) PATH AND OMNI ROBOT PERFORMANCE OVER 

VELOCITY AND ERROR 

 

In contrast, in the Non-Hemangiomas Path, the robot 

moves slower with a mean velocity of 10.370 units, 

exhibiting less variability (standard deviation of 0.51368 

units) and greater precision (standard error of the mean at 

0.25684 units).Considering the Error parameter: In the 

Hemangiomas Path, the robot has higher positional errors 

with a mean error of 36.58500 units, more variability 

(standard deviation of 4.715602 units), and less precision 

(standard error of the mean at 2.357801 units). In the Non-

Hemangiomas Path, the robot has lower positional errors with 

a mean error of 20.29500 units, less variability (standard 

deviation of 1.666743 units), and greater precision. 

 
Figure 9.The robot performance analysis over different path VS 

error and speed in path tracking mission 

IV. CONCLUSION 

This paper describes the steps involved in simulating and 
implementing an OMNI robot in CoppeliaSim, focusing on 
path tracking over Hemangiomas and Non-Hemangiomas 
paths. The analysis centers on two key parameters: average 
error and average velocity with the help of Levene's Test for 
Equality of Variances and t-test statistical analysis .Path 
tracking for an OMNI robot using SLAM as the main target 
of this paper involves navigating through a pre-mapped 
environment while continuously updating the robot's position 
and orientation. The effectiveness of the OMNI robot's path 
tracking is assessed by measuring the average positional error 
and the average velocity, ensuring precise and efficient 
movement along the designated paths. As the results shown, 
Over the Non-Hemangiomas Path robot  Provides a slower 
but more consistent and precise navigation experience with 
significantly lower errors, making it preferable for 
applications where accuracy is crucial.  Overall, the choice of 
path type should consider the trade-off between speed and 
accuracy, with the Hemangiomas path favoring speed and the 
non-Hemangiomas path favoring precision. As expected, the 
mean velocity and error are higher for the circle path 
compared to the special path. Based on Table 2, these 
differences are significant at the 5 percent level (P-value = 
0.001). Analysis of Independent Samples T-Test Results 
concerning the Velocity shows over the Levene's Test for 
Equality of Variances. The significance value (0.285) is 
greater than 0.05, indicating that the assumption of equal 
variances holds true. In the equal variation assumed, the test 
shows a significant difference in velocity between the two 
path types, with p-value 0.001, well below the threshold of 
0.05. The mean velocity difference of 2.98500 units is 
statistically significant, with the confidence interval 
indicating that the true mean difference lies between 1.80864 
and 4.16136 units (assuming equal variances. With respect to 
Error, Levine’s Test for Equality of Variances shows that the 
significance value (0.035) is less than 0.05, indicating that the 
assumption of equal variances does not hold true. By using 
the t-test for Equality of Means, in case not assuming equal 
variances, shows a significant difference in error between the 
two path types, with p-value 0.004, well below the threshold 
of 0.05. The mean error difference of 16.290 units is 
statistically significant, with the confidence interval 
indicating that the true mean difference lies between 9.15066 
and 23.42934 units. These results indicate that while the robot 
moves faster on the Circle path, it also incurs significantly 
higher positional errors compared to the Special path. This 
trade-off between speed and accuracy should be considered 
when choosing path types for specific applications. As the 
result shows, according to the average speed of 10.37 for a 
specific route, with 95% confidence, it can be stated that the 
speed on the circular route is 20% to 40% higher than on the 
non-homogeneous path. When comparing the amount of error 
in path tracking, the error has increased by 50% to 100% on 
the homogeneous path. This indicates that although the speed 
is lower on the non-homogeneous path, the accuracy of path 
tracking is better. Overall, the test results show that while the 
SLAM method can successfully reach the initial and final 
points, it has limitations in achieving complete route tracking 
according to the designed path, especially in the presence of 
obstacles. It appears that integrated methods might offer a 
solution, and this approach will be considered for future work 
in this research. 

Parameter 
Path Mean 

Std. 
Deviation 

Std. Error 
Mean 

Velocity H 13.3550 0.81279 0.40640 
NH 10.3700 0.51368 0.25684 

Error H 36.58500 4.715602 2.357801 
NH 20.29500 1.666743 0.833372 
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